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Abstract. A general numerical method for calculation of the Fermi integrals based on the
approximation of a dilogarithm by a series of Chebyshev polynomials is developed. The accuracy
of the method proposed is analysed in detail. As an example, the Fermi integral of the model
electron density for iron at the Curie temperature is considered.

1. Introduction

The calculation of many quantities in solid state physics, and in particular the electron
density and total energy, local magnetic moments and susceptibilities, is reduced to the
computation of the so-called Fermi integrals

I =
∫ ∞

−∞
g(ε)f (ε) dε (1.1)

whereg(ε) is an arbitrary function, vanishing atε → −∞ and increasing not faster than
any power ofε at ε → +∞, andf (ε) = [exp((ε − µ)/T ) + 1]−1 is the Fermi function.
(Henceforth the temperature is expressed in energy units.)

In the general case the calculation of integrals (1.1) is a very complicated problem,
but in two important particular cases this problem is essentially simplified: for metals in
the free-electron model and for non-degenerate semiconductors withg(ε) in the form of a
power function.

First we consider the situation in metals (µ/T � 1). Integrating (1.1) by parts we have

I =
∫ ∞

−∞
φ(ε)

(
−∂f

∂ε

)
dε (1.2)

where

φ(ε) =
∫ ε

−∞
g(ε′) dε′. (1.3)

Because of the delta-shaped character of the function−∂f/∂ε, only the values ofε close to
µ contribute to the integral (1.2). Therefore, assuming that the functiong(ε) is sufficiently
smooth in the neighbourhood ofε = µ, it is natural to use the Taylor series expansion of
φ(ε) in powers ofε − µ and by simple calculations (see, e.g., [1]) we obtain

I T =
∫ µ

−∞
g(ε) dε + π2

6
T 2g′(µ) + 7π4

360
T 4g′′′(µ). (1.4)

In the free-electron approximation, usually the first two terms are retained in (1.4). However,
beyond the free-electron approximation it is difficult to use equation (1.4). Firstly, in real
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calculations the functiong(ε) as a rule is not analytic but tabular, and computing the
derivativesg(n)(µ) represents an independent (ill-posed!) problem. Secondly, and above all,
in the majority of metals the functiong(ε) is not sufficiently smooth in the neighbourhood
of µ, even in the simplest case, when it represents the electron density of states (see, e.g.,
[2]).

In [3], it has been shown that singularities of the density of statesν(ε) can have a
substantial and sometimes even decisive influence on the temperature dependence of the
physical quantities. For example, a sharp break inν(ε) at some pointε0 chose toµ results
in the appearance of a contribution different fromT 2 in the temperature dependence of
the unenhanced magnetic susceptibility. Similar results should be expected also for other
physical quantities expressed in terms of the Fermi integrals.

Now we consider the situation in semiconductors. In the case of non-degenerate
semiconductors (−µ/T � 1) the Fermi function is simplified tof (ε) ' A exp(−ε/T ),
i.e. it transfers to the Maxwell–Boltzmann distribution with the normalization constant
A = exp(µ/T ) and, wheng(ε) is the power function, the integral (1.1) can be calculated
analytically. For degenerate semiconductors the integrals (1.1) cannot be calculated
analytically for anyg(ε) but the constant. In this case, Fermi integrals withg(ε) ∼ εj

arise, wherej is an integer or a half-integer value. All previous research is devoted to
approximations for precisely such integrals (see, e.g., [4, 5] and references therein).

However, at present it is necessary to compute repeatedly various Fermi integrals for
tabular functionsg(ε) (see, e.g., [6]). In this connection in the present paper we suggest a
simple numerical method for calculation of the integrals (1.1). Its accuracy is analysed in
detail. As an example, the Fermi integrals involving the model density of states of iron are
calculated.

2. Method

First let us linearly interpolate the tabular functiong(ε) by the formula

g(ε) =
N∑

i=1

1g′
i (ε − εi)θ(ε − εi) (2.1)

whereN is the number of sites andθ(x) is a step function equal to zero atx < 0 and unity
at x > 0;

1g′
1 = g′

1 1g′
i = g′

i − g′
i−1 i = 2, 3, . . . , N − 1 1g′

N = −g′
N−1

g′
i = (gi+1 − gi)/(εi+1 − εi) gi ≡ g(εi) i = 1, 2, . . . , N − 1.

(2.2)

Substitution of (2.1) into (1.1) gives

I =
N∑

i=1

1g′
i

∫ ∞

0
f (ε, ξi, T )ε dε = − 1

2

N∑
i=1

1g′
i

∫ ∞

0
ε2 ∂f (ε, ξi, T )

∂ε
dε (2.3)

whereξi = µ − εi .
Next let us consider an integral of more general form than the integral in (2.3):

Jn(ξ, T ) =
∫ ∞

0
εn+1 ∂f (ε, ξ, T )

∂ε
dε n = 0, 1, 2, . . . . (2.4)

Integrating by parts we obtain

Jn(ξ, T ) = −(n + 1)

∫ ∞

0
f (ε, ξ, T )εn dε
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= (n + 1)T

∫ ∞

0
εn d

{
ln

[
1 + exp

(
−ε − ξ

T

)]}
. (2.5)

At n = 0 this integral is calculated analytically:

J0(ξ, T ) = −T F0(−ξ/T ) (2.6)

F0(x) = ln[1 + exp(−x)]. (2.7)

At n = 1, 2, . . ., it is reduced to the iterated integral

Jn(ξ, T ) = −(n + 1)!T n+1Fn(−ξ/T ) (2.8)

Fn(x) =
∫ ∞

x

dxn

∫ ∞

xn

dxn−1 . . .

∫ ∞

x2

ln[1 + exp(−x1)] dx1. (2.9)

It is easy to prove that forFn(x) the following recursion relations are valid:

Fn(−|x|) = Dn(|x|) + Fn(0) (2.10)

Dn(|x|) =
∫ |x|

0
Dn−1(t) dt + |x|Fn−1(0) (2.11)

D0(|x|) = ln[1 + exp(|x|)] − F0(0). (2.12)

These relations can be used to calculateFn(x) at x < 0. Equations (2.8)–(2.11) have been
given in [3], but without their proofs. Brief proofs of all equations (2.8)–(2.12) are given
in appendices 1 and 2.

We dwell on the calculation ofFn(x) atx > 0. The integrals (2.9) cannot be analytically
calculated. Substituting the power series of ln[1+ exp(−x)] into (2.9) and integrating term
by term, which is valid because of uniform convergence of the series atx > 0, we obtain

Fn(x) =
∞∑

k=1

(−1)k+1 exp(−kx)

kn+1
. (2.13)

Hence, atx → ∞ the functionFn(x) decreases as exp(−x), and at zero it has the value

Fn(0) = (1 − 2−n)ζ(n + 1) (2.14)

where ζ(m) is the Riemann zeta function. Taking into account the asymptotic value at
infinity, the following simple approximate formula [3] can be used for calculation ofFn(x):

Fn(x) ' FR
n (x) = [exp(x) + qn]−1 (2.15)

where the parameterqn is chosen so thatFn(x) andFR
n (x) coincide atx = 0. Taking into

account (2.14), we obtain

qn = [Fn(0)]−1 − 1 = [(1 − 2−n)ζ(n + 1)]−1 − 1. (2.16)

As the numerical calculations show, the error1FR
n (x) = |Fn(x) − FR

n (x)| for calculation
of Fn(x) by (2.15) within the whole interval [0, ∞) does not exceed 0.31× 10−2 for n = 1
and slightly decreases with increase inn (table 1). For many model problems using the
Fermi integrals, this accuracy of theFn(x) calculation is quite sufficient. For exact values
of Fn(x) we used partial sums of the expansion (2.13) by whichFn(x) can be computed to
any required accuracy. Since the series (2.13) is alternating and its elements monotonically
decrease in absolute value, then the remainder in absolute value is less than its first term.
Clearly, for practical calculation ofFn(x) at small x the series (2.13) is unsuitable; for
calculation ofF1(0), say with the accuracy 10−8, it is necessary to add 104 terms together.



3154 B I Reser

Table 1. Maximum errors in the calculation of iterated integralsFn(x) by the approximate
formula FR

n (x) = [exp(x) + qn]−1 and using the Chebyshev approximation.

Value for the followingn

1 2 3 4 5

maxx>0 1FR
n (x) 0.31× 10−2 0.17× 10−2 0.77× 10−3 0.32× 10−3 0.13× 10−3

maxx>0 1FC
n7(x) 0.45× 10−7 0.25× 10−6 0.78× 10−6 0.16× 10−5 0.25× 10−5

The following method is suitable for effective and practically exact calculation of the
integralsFn(x). By substitutingt = exp(−x1) the integralF1(x) is reduced to a dilogarithm:

F1(x) = L[exp(−x)] x > 0

L(y) =
∫ y

0

ln(1 + t)

t
dt 0 6 y 6 1.

Using the expansion of a dilogarithm in the series of Chebyshev polynomials

L(y) =
∞∑

k=0

akT
∗
k (y) 0 6 y 6 1

whereak are the Chebyshev coefficients, and

T ∗
k (y) =

k∑
j=0

bkjy
k−j

are shifted Chebyshev polynomials of the first kind, we obtain

F1(x) =
∞∑

k=0

akT
∗
k [exp(−x)] =

∞∑
k=0

ak

k∑
j=0

bkj exp[−(k − j)x] x > 0. (2.17)

Since these series converge very rapidly and the coefficientsak and bkj are known up to
largek-values (see, e.g., [7], pp. 74 and 494), the integralF1(x) can be calculated with a
high accuracy from (2.17). As table 2 shows, the maximum error of approximation of the
integralF1(x) by them partial sum of the series of Chebyshev polynomials given by

FC
1m(x) =

m∑
k=0

ak

k∑
j=0

bkj exp[−(k − j)x] x > 0 (2.18)

decreases very quickly with increase inm and atm = 7 becomes equal to 0.45× 10−7, i.e.
five orders smaller than in approximation by (2.15) (see table 1). However, unlike1FR

1 (x)

that vanishes on increase inx, the error1FC
1m(x) for large values ofx remains small but

finite:

FC
1m(∞) = lim

x→∞ FC
1m(x) =

m∑
k=0

akbkk.

In this connection in the calculation of the iterated integralFn(x) at n > 1 the function
FC

1m(x) is substituted by the function

F̃ C
1m(x) ≡ FC

1m(x) − FC
1m(∞) =

m∑
k=1

ak

k−1∑
j=0

bkj exp[−(k − j)x] (2.18a)
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which has correct asymptotic behaviour at infinity. The substitution of (2.18a) into (2.9)
gives

FC
nm(x) =

m∑
k=1

ak

k−1∑
j=0

bkj

exp[−(k − j)x]

(k − j)n−1
n > 1. (2.19)

Maximum errors in the calculation of the integralsFn(x) by (2.19) increase slightly with
increase inn but, as one can see from table 1, even at smallm they remain several orders
smaller than in the calculation by the approximate formula (2.15).

Table 2. Maximum error in the approximation of integralF1(x) by the m partial sum of the
series of Chebyshev polynomials.

Value for the followingm

3 4 5 6 7

maxx>0 1FC
1m(x) 0.15× 10−3 0.16× 10−4 0.20× 10−5 0.26× 10−6 0.45× 10−7

Now let us return to the integral (2.3). Taking into account (2.4) and (2.8), the integral
can be written in the form

I (T ) = T 2
N∑

i=1

1g′
i F1(−ξi/T ) (2.20)

where according to (2.10)–(2.12)

F1(−|x|) = x2

2
+ 2F1(0) − F1(|x|) x < 0. (2.21)

Dividing the sum with respect toi into two sumsxi ≡ −ξi/T = −(µ − εi)/T < 0 and
xi > 0, and taking into account (2.14), we have

I (T ) = T 2

{ ∑
xi<0

1g′
i

[
x2

i

2
+ ζ(2) − F1(|xi |)

]
+

∑
xi>0

1g′
iF1(xi)

}
. (2.22)

At T = 0 in (2.22), indeterminacy appears. Removing the parentheses, we obtain

I (0) = 1
2

∑
ξi>0

1g′
iξ

2
i . (2.23)

Thus, the problem of calculation of the Fermi integrals by using the linear interpolation
(2.1) is reduced to the problem of the calculation of the integralF1(x) only at x > 0. The
integral F1(x) and the errors in its approximation by (2.15) and the third partial sum of
series of Chebyshev polynomials are represented in figure 1. As seen from the figure, the
function F1(x) monotonically decreases (atx → ∞ it decreases exponentially). As for the
error1FR

1 (x), it monotonically increases initially, achieving a maximum nearx = 0.5, and
then monotonically decreases (to zero atx → ∞). The error1FC

1m(x) has an oscillating
character, its oscillations being condensed to the origin. The number of zeros of the function
1FC

1m(x) is equal to the orderm of the corresponding partial sum. Atx → ∞ the function
1FC

1m(x) increases, asymptotically approaching the valueFC
1m(∞). This value even at

m = 3 is a twentieth of the maximum error inF1(x) calculated by (2.15).
The subroutine for calculation of the Fermi integralsI (T ), named FINT and based

on the method outlined, is given in [8]. The subroutine allows us to calculateI (T ) using
both the simple approximate formula (2.15) and the Chebyshev approximation. By FINT the
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Figure 1. IntegralF1(x) (——) and errors in its approximation by the function [exp(x)+qn]−1

(· · · · · ·) and the third partial sum of the series of Chebyshev polynomials (- - - -).

Fermi integral can be calculated, if necessary, also to any required accuracy. The subroutine
FINT is written in FORTRAN and is included in the illustrating program that realizes the
test given below.

3. Test and results

We used the model electron density of statesν(ε) of iron represented in figure 2 as a test
function g(ε) for calculation of the Fermi integral (1.1). It mainly reflects the behaviour
of the actual density of states of iron obtained in self-consistent calculations (see, e.g., [2])
and it is often used, for example, in the numerical calculations of the itinerant-electron
magnetism theory (see, e.g., [9] and references therein). In figure 2 the integrated density
of statesN(ε) is also represented, which gives the number of electron states belowε. The
Fermi level determined from the relationN(εF ) = 8 (the total number of 3d and 4s electrons
in iron) is equal to 5.87 eV. The Fermi integral (1.1) withg(ε) = ν(ε) is the electron density.

The test calculation of Fermi integralI (T ) by (2.22) has been carried out at the Curie
temperature (TC = 1044/11 604.5 eV) and at two values of the chemical potentialµ = 5.90
and 5.99 eV, approaching the energyε0 = 6.0 eV corresponding to the peak of density
of states. Strictly speaking, the chemical potentialµ in figure 2 must shift downwards
slightly along a slope of the peak with increasing temperature, but in the test calculation the
opposite situation is of greater interest. The results of the Fermi integral calculation using
the approximate values forF1(x) obtained by (2.15) and (2.18) atm = 5, and exact values
obtained by (2.13), are given in table 3. In the same table the value of the Fermi integral
I T obtained by (1.4) is given for comparison. The errors in the Fermi integral calculation
by the three methods considered are given in table 4. As seen from table 4, the error1IT ,
in the calculation using the Taylor series is equal to approximately 10−2 and increases as
the chemical potentialµ approaches the energyε0 corresponding to the peak of density of
states. The error in the calculation by using the simple formula (2.15) is two orders smaller
than1IT , and by using the Chebyshev approximation, atm = 5, it is almost equal to zero
(< 10−7); in both cases it does not depend on the position ofµ relative toε0.
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Figure 2. Model density and number of states of iron. The vertical broken line indicates the
Fermi level.

Table 3. Fermi integralI of the model electron density for iron and its approximations using
the Taylor series (IT ), equation (2.15) (IR) and the Chebyshev approximation (IC ).

µ (eV) IT IR IC
5 I

5.90 8.154 934 9 8.140 843 4 8.140 930 3 8.140 930 3
5.99 8.500 085 8 8.465 689 8 8.465 758 6 8.465 758 5

Table 4. Errors in the calculation of the Fermi integral of the model electron density for iron
using the Taylor series (1IT ), equation (2.15) (1IR) and the Chebyshev approximation (1IC ).

µ (eV) 1IT 1IR 1IC
5

5.90 0.14× 10−1 0.87× 10−4 0.40× 10−7

5.99 0.34× 10−1 0.69× 10−4 0.52× 10−7

4. Conclusion

The proposed numerical method of calculation of the Fermi integrals is universal, simple and
practically exact. The universality of the method is obvious. The simplicity and exactness
are justified by the fact that, for a dilogarithm, to the calculation of which the problem is
reduced, the expansion in the series of Chebyshev polynomials already exists with rather
high accuracy. As our realization, described in [8] in detail, showed, the method is highly
efficient as well; even the fifth partial sum of the series gives the possibility of calculating
the Fermi integral of the model electron density which has an error< 10−7.
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Appendix 1. Reduction of the integralJn(ξ, T ) to the iterated integral

From (2.5) it follows that

Jn(ξ, T ) = (n + 1)T

{
εn ln

[
1 + exp

(
−ε − ξ

T

)] ∣∣∣∣∞
0

−n

∫ ∞

0
εn−1 ln

[
1 + exp

(
−ε − ξ

T

)]
dε

}
.

The first term is equal to zero since the function ln(1 + exp(−(ε − ξ)/T )) decreases
exponentially atε → ∞. Substituting(ε − ξ)/T = xn, ε = T xn + ξ , dε = T dxn in
the second term, we have

Jn(ξ, T ) = −(n + 1)nT 2
∫ ∞

−ξ/T

(T xn + ξ)n−1 ln[1 + exp(−xn)] dxn.

Now, writing (T xn + ξ)n−1 in the form(T xn + ξ)n−2(T xn + ξ), we obtain

Jn(ξ, T ) = −(n + 1)nT 2

[
T

∫ ∞

−ξ/T

(T xn + ξ)n−2xn ln[1 + exp(−xn)] dxn

+ξ

∫ ∞

−ξ/T

(T xn + ξ)n−2 ln[1 + exp(−xn)] dxn

]
. (A1.1)

Integration by parts gives for the first integral from (A1.1)∫ ∞

−ξ/T

(T xn + ξ)n−2xn ln[1 + exp(−xn)] dxn

= −
∫ ∞

−ξ/T

xn d

( ∫ ∞

xn

(T xn−1 + ξ)n−2 ln[1 + exp(−xn−1)] dxn−1

)
= − ξ

T

∫ ∞

−ξ/T

(T xn−1 + ξ)n−2 ln[1 + exp(−xn−1)] dxn−1

+
∫ ∞

−ξ/T

dxn

∫ ∞

xn

(T xn−1 + ξ)n−2 ln[1 + exp(−xn−1)] dxn−1. (A1.2)

Substituting (A1.2) into (A1.1), we obtain

Jn(ξ, T ) = −(n + 1)nT 3
∫ ∞

−ξ/T

dxn

∫ ∞

xn

(T xn−1 + ξ)n−2 ln[1 + exp(−xn−1)] dxn−1.

Then, writing (T xn−1 + ξ)n−2 in the form (T xn−1 + ξ)n−3(T xn−1 + ξ) and operating as
above, we have

Jn(ξ, T ) = −(n + 1)n(n − 1)T 4
∫ ∞

−ξ/T

dxn

∫ ∞

xn

dxn−1

×
∫ ∞

xn−1

(T xn−2 + ξ)n−3 ln[1 + exp(−xn−2)] dxn−2.

Continuing the reduction of degree of the factor(T xn−2 + ξ)n−3, finally we obtain (2.8) and
(2.9).
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Appendix 2. Recursion relations for the integralsFn(x)

By definition

Fn(−|x|) =
∫ ∞

−|x|

∫ ∞

xn

. . .

∫ ∞

x2

ln[1 + exp(−x1)] dx1 . . . dxn =
∫ ∞

−|x|
f (xn) dxn (A2.1)

where

f (xn) =
∫ ∞

xn

∫ ∞

xn−1

. . .

∫ ∞

x2

ln[1 + exp(−x1)] dx1 . . . dxn−1. (A2.2)

Let us represent the integral (A2.1) as a sum of two integrals:

Fn(−|x|) =
∫ 0

−|x|
f (xn) dxn +

∫ ∞

0
f (xn) dxn = Dn(|x|) + Fn(0) (A2.3)

where

Dn(|x|) =
∫ 0

−|x|
f (xn) dxn =

∫ |x|

0
f (−t) dt. (A2.4)

Considerf (−t) in more detail:

f (−t) =
∫ 0

−t

∫ ∞

xn−1

. . .

∫ ∞

x2

ln[1 + exp(−x1)] dx1 . . . dxn−1

+
∫ ∞

0

∫ ∞

xn−1

. . .

∫ ∞

x2

ln[1 + exp(−x1)] dx1 . . . dxn−1

= Dn−1(t) + Fn−1(0). (A2.5)

Substituting (A2.5) into (A2.4) we obtain

Dn(|x|) =
∫ |x|

0
Dn−1(t) dt + |x|Fn−1(0) n = 1, 2, . . . . (A2.6)

Let us find the explicit form ofD0(|x|). According to (A2.4) and (A2.2),

D1(|x|) =
∫ |x|

0
ln[1 + exp(t)] dt.

On the other hand, according to (A2.6), it should be

D1(|x|) =
∫ |x|

0
D0(t) dt + |x|F0(0).

Setting the right-hand sides of the two last expressions equal, we have∫ |x|

0
ln[1 + exp(t)] dt =

∫ |x|

0
D0(t) dt + |x|F0(0).

Whence, differentiating with respect to|x|, we obtain

D0(|x|) = ln[1 + exp(|x|)] − F0(0). (A2.7)
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